
1 Installation

1. Download source code from https://github.com/uclchem/uclpdr, extract into new folder.

2. The Github version compiles using ifort, and also requires OpenMP and Sundials to run. On a UCL
machine, you might need to make sure it knows where to find the compiler and OpenMP libraries before
doing anything else. Edit .login in your home directory and add
setenv PATH $PATH’:/opt/intel/Compiler/11.1/046/bin/intel64/’

and
setenv LD LIBRARY PATH $LD LIBRARY PATH’:/opt/intel/Compiler/11.1/046/lib/intel64/’

then run source .login on the command line to update the paths.

3. Go into uclpdr/Source and edit the INCLUDES and LIBRARIES lines of the Makefile to point to
a Sundials installation. On a UCL machine you can use
INCLUDES = -I/home/fdp/sundials/include

LIBRARIES = -L/home/fdp/sundials/lib

and avoid installing it yourself.

4. Type make and hopefully the code should compile without anything crashing.

2 Running UCL PDR

2.1 Chemical Network

The code needs a chemical network to run, and has to be recompiled if you want to change it. The
Chemical-Networks folder has a bunch of examples, and makerates.py which you need to use to create
new ODE and Jacobian files if you change anything. You need four files for each network: species.dat
is a list of the chemical species and their initial abundances, rates.dat is a list of chemical reactions
and their temperature dependences, odes.c and jacobian.c are source files the code needs to calculate
the chemical abundances. To change to network blah, copy blah-species.dat and blah-rates.dat

to Datafiles/Chemical-Network/species.dat and Datafiles/Chemical-Network/rates.dat, and
blah-odes.c and blah-jacobian.c to Source/odes.c and Source/jacobian.c and then make again.
If you want to change the values (initial abundances, reaction rates) you can just edit the numbers in
Datafiles/Chemical-Network without having to recompile - if you want to add or remove species or
reactions, you need to run makerates.py on the new species and rates files to generate the ODE network
again.

2.2 Model parameters

Most of the other input parameters are read from Input/model-parameters.dat. The folder also
contains example cloud and radiation field files. The size and density of the model cloud are given in the
cloud file, the incident UV and X-ray flux are given in the radiation file. Other important parameters
are the output prefix (the name of the output files), cosmic ray ionization rate, A V/N H conversion
rate (determines how the density/size of the cloud converts to extinction), and the coolant data files
(which species the code calculates cooling rates/line emissivities for). Available cooling species are in
Datafiles/Collisional-Rates - anything in there can be added, and additional species are available
from http://home.strw.leidenuniv.nl/~moldata/. Setting a minimum allowed temperature can also
sometimes be useful.

2.3 Other inputs

Some effects are hardcoded into the source files so can only be changed there. Possibly important ones
are:

X-rays: The X-ray spectrum is by default a blackbody. The temperature and energy range are defined in
xray cross sections.f90 in the CALCULATE XRAY PROPERTIES subroutine. The shape of the spectrum

1

can be changed by editing the XRAY FLUX function. The TOTAL XRAY CROSS SECTION function calcualtes
the absorption cross-section from the elemental abundances, so this might need changing for highly non-
solar metallicities. If you want to use X-rays make sure the chemical network actually includes X-ray
reactions.

H2 formation rate: Defined in h2 formation rate.f90. There are a bunch of rates from the literature
defined at the end of the file - uncomment whichever one you feel like using.

Heating rates: In heating rates.f90. The total heating rate is defined at the end of the subroutine
- there are three photoelectric heating rates available, uncomment whichever you want to use. The
standard cosmic ray heating rate is determined by the H2 density so won’t be accurate if the gas is
mostly atomic.

Dust: The dust abundance and properties are defined in a bunch of different places, annoyingly.
Grain radius (defined in model-parameters.dat) and dust density (defined as a dust-to-gas ratio in
read particles.f90) are used to calculate the gas-grain collisional heating/cooling. The radius also
affects freeze-out (if included), and the density affects the calculation of line emissivities (due to thermal
dust emission). Some of the H2 formation rates depend on the total dust surface area per hydrogen
nucleus. There are also the extinction properties and albedo in model-parameters.dat.

3 Output files

The code creates a bunch of output files named <modelname>.xxxx.out where <modelname> is the one
you define in model-parameters.dat. The important ones are:

prop.out: Has the main properties like density, gas and dust temperature and radiation field strength
for each point in the cloud.

av.out: Physical distance and extinction into the cloud.

abun.out: Chemical abundances of species in the reaction network.

emis.out: Emissivity of each included emission line in erg cm−3 s−1.

cool.out: Total cooling rate for each species in erg cm−3 s−1.

heat.out: Total heating rate for each heating mechanism in erg cm−3 s−1. Gas-grain ‘heating’ will
generally be negative so is actually a cooling mechanism.

4 Common issues

The code’s error messages are usually quite helpful. Anything about a Gauss-Jordan solver means
you’ve probably got a coolant with two energy levels the same (the OH+ file from the database has
this issue). You also need to update the ’number of coolants’ parameter whenever you change them.
First thing to check is usually that odes.c/jacobian.c match the species.dat and rates.dat files in
Datafiles/Chemical-Network. If you put particularly insane values for the X-ray flux in it can stop
the chemistry solver from ever converging, especially if you reduce the minimum energy.

2

